Prepubic sling in curing non-stress leakage following complete cure of stress incontinence by a midurethral sling

PETER PETROS (*) (***) - PETER RICHARDSON (***)

(*) Royal Perth Hospital, Perth, Western Australia
(**) University of Western Australia
(***) Gallier’s Hospital, Armadale, Western Australia

Abstract: A 46 year old woman entirely cured of stress incontinence by a midurethral sling, continued to leak a large amount of urine. A tampon improved this urine loss from a mean 227 gm/24 hours to 44 gm/24 hours, and a prepubic sling to a residual complaint of drops of urine on bending for household chores. It was concluded that the external urethral ligaments are an important component of distal urethral closure, and that this mechanism is concerned primarily with sealing of the urethra, rather than stress incontinence control.

Key words: Prepubic sling; Minisling; Non-stress incontinence; External urethral ligaments.

HISTORY & EXAMINATION

A 46 year old woman with Von Willebrand’s disease gave a history of urodynamically diagnosed severe stress incontinence (SI) cured initially with a tension-free (monofilament) retropubic midurethral sling in August 2002.

The patient was completely cured for almost 2 years. She presented in late 2005 with a history of gradually worsening SI, continuous leaking, no urgency, and no evidence of overactive bladder (OAB) on urodynamic testing.

On transperineal ultrasound, it was evident that the mesh tape was pulling open the posterior urethral wall on straining. At the second operation in November 2005 the mesh was densely adherent to a thin dilated posterior urethral wall. The mesh was carefully excised, piece by piece, and the urethral wall plicated. With 300 ml saline in the bladder, a Tissue Fixation System (TFS) midurethral sling was applied under local anaesthetic (LA) and sedation (Fig. 1). The sling was tightened until no urine was lost during coughing. The patient was 100% cured until day 9, when she lifted a heavy exercise bike forcibly. Within 20 hours, the patient was admitted as an emergency, with severe vulval swelling and urinary retention, requiring suprapubic catheterisation. The haematoma gradually resolved over 7 days, and the patient was able to urinate spontaneously. However, her SI was far worse than before. Mean urine loss /24 hrs was 900 gm (range 700-1100). With a vaginal tampon, the loss/24 hrs was a mean of 300 gm (range 50-400 gm).

At the 3rd operation in June 2006 the old sling was removed, and a new midurethral TFS minisling was applied under LA/sedation. The vaginal epithelium overlying the urethra was devoid of underlying fascia. The fascial layer with vagina attached was brought across to cover the urethra, and anchored with sutures into the paraurethral tissues. The patient was entirely dry for 4 weeks, when she reported commencement of insensible urine loss, much worse in the 2nd part of the day, and loss of urine with sudden movement accompanied by a “bubble”. There was no evidence of OAB on urodynamic testing. Mean urethral closure pressure was 56 cm H₂O.

Multiple tests over some weeks demonstrated a mean urine loss/24 hrs after 3 months of 227 gm (range 190-265) reducing to 44 gm/24 hours (range 36-55) with a vaginal tampon. There was no urine loss with 10 coughs with 300 ml saline in the bladder. The external urethral ligaments (EUL) attaching the external meatus to the anterior surface of pubic bone on each side were extremely lax (Fig. 2). It was reasoned that these had become dislocated, and were a major factor in the insensible urine loss.

At the 4th operation in November 2006 the vaginal epithe-
We hypothesize that a lax EUL will allow the hammock to ‘droop’, much like an open trapdoor, invalidating every part of this sealing mechanism.

Vastly increased urine loss in the afternoon is consistent with such a ‘breaking of the seal’. Vastly decreased urine loss with a tampon, from 227 gm/24 hours to 44 gm, is consistent with preventing downward ‘droop’ of the distal vagina (Fig. 2).

Enhorning 5 and Constantinou 7 both demonstrated a rise in urethral pressure 0.25 seconds before a cough was registered, indicating a finely co-ordinated neural control of the continence mechanism. The suspensory ligaments contain smooth muscle, nerves, and blood vessels, all of which indicate they are active contractile structures. A sling creates collagen only, 4 and so does not have neural control. We attribute lack of total cure to the inability of the slings to contract the ligaments and fascia, an essential requirement for water-tight tension and, added to this, a deficient fascial layer of the hammock, irreparably stripped by the post-operative haematoma.

REFERENCES

Interest Declared: Professor Petros is the original designer and developer of the TFS.